Febreze Fabric Refresher **Procter & Gamble Australia Pty Ltd** Chemwatch: **4841-16**Version No: **2.1.1.1** Safety Data Sheet according to WHS and ADG requirements Chemwatch Hazard Alert Code: 2 Issue Date: 01/01/2013 Print Date: 31/03/2016 Initial Date: Not Available L.GHS.AUS.EN #### SECTION 1 IDENTIFICATION OF THE SUBSTANCE / MIXTURE AND OF THE COMPANY / UNDERTAKING #### **Product Identifier** | Product name | Febreze Fabric Refresher | |-------------------------------|--------------------------| | Synonyms | Not Available | | Other means of identification | Not Available | #### Relevant identified uses of the substance or mixture and uses advised against | Relevant identified | SDS are intended for use in the workplace. For domestic-use products, refer to consumer labels. | |---------------------|---| | uses | Fabric refresher. | #### Details of the supplier of the safety data sheet | Registered company name | Procter & Gamble Australia Pty Ltd | Procter & Gamble Distributing New Zealand Ltd | |-------------------------|---|---| | Address | Level 4, 1 Innovation Road NSW Macquarie Park 2113
Australia | c/o Simpson Grierson, 88 Shortland Street Auckland 1010 New Zealand | | Telephone | 1800 201 418 | 0508 555 446 | | Fax | +61 2 8864 5319 | Not Available | | Website | Not Available | Not Available | | Email | Not Available | Not Available | #### **Emergency telephone number** | Association / Organisation | Not Available | Not Available | |--------------------------------------|---------------|---------------| | Emergency telephone numbers | 1800 201 418 | Not Available | | Other emergency
telephone numbers | Not Available | Not Available | #### **CHEMWATCH EMERGENCY RESPONSE** | Primary Number | Alternative Number 1 | Alternative Number 2 | |----------------|----------------------|----------------------| | 1800 039 008 | +612 9186 1132 | Not Available | Once connected and if the message is not in your prefered language then please dial 01 #### **SECTION 2 HAZARDS IDENTIFICATION** #### Classification of the substance or mixture NON-HAZARDOUS CHEMICAL. NON-DANGEROUS GOODS. According to the WHS Regulations and the ADG Code. CHEMWATCH HAZARD RATINGS Chemwatch: 4841-16 Page 2 of 11 Issue Date: 01/01/2013 Version No: 2.1.1.1 Print Date: 31/03/2016 #### Febreze Fabric Refresher | | Min | Max ¦ | | |--------------|-----|-------|--------------------------| | Flammability | 0 | | | | Toxicity | 0 | | 0 = Minimum | | Body Contact | 2 | | 1 = Low | | Reactivity | 0 | | 2 = Moderate
3 = High | | Chronic | 0 | | 4 = Extreme | | Poisons Schedule | Not Applicable | |------------------|----------------| | Classification | Not Applicable | #### Label elements | GHS label elements | Not Applicable | |--------------------|----------------| | | | | SIGNAL WORD | NOT APPLICABLE | | | | #### Hazard statement(s) Not Applicable #### Precautionary statement(s) Prevention Not Applicable ### Precautionary statement(s) Response Not Applicable #### Precautionary statement(s) Storage Not Applicable #### Precautionary statement(s) Disposal Not Applicable #### SECTION 3 COMPOSITION / INFORMATION ON INGREDIENTS #### **Substances** See section below for composition of Mixtures #### **Mixtures** | CAS No | %[weight] | Name | |-----------|-----------|--| | 64-17-5 | <5 | ethanol | | 7173-51-5 | <1 | didecyldimethylammonium chloride | | | balance | ingredients determined to be non-hazardous | #### **SECTION 4 FIRST AID MEASURES** #### Description of first aid measures | Eye Contact | If this product comes in contact with the eyes: • Wash out immediately with fresh running water. • Ensure complete irrigation of the eye by keeping eyelids apart and away from eye and moving the eyelids by occasionally lifting the upper and lower lids. • Seek medical attention without delay; if pain persists or recurs seek medical attention. • Removal of contact lenses after an eye injury should only be undertaken by skilled personnel. | |--------------|---| | Skin Contact | If skin or hair contact occurs: ► Flush skin and hair with running water (and soap if available). ► Seek medical attention in event of irritation. | | Inhalation | If fumes, aerosols or combustion products are inhaled remove from contaminated area. Other measures are usually unnecessary. | | Ingestion | Immediately give a glass of water. First aid is not generally required. If in doubt, contact a Poisons Information Centre or a doctor. | #### Indication of any immediate medical attention and special treatment needed Treat symptomatically. #### **SECTION 5 FIREFIGHTING MEASURES** Chemwatch: 4841-16 Version No: 2.1.1.1 #### Page 3 of 11 Febreze Fabric Refresher Issue Date: 01/01/2013 Print Date: 31/03/2016 #### **Extinguishing media** - ▶ There is no restriction on the type of extinguisher which may be used. - Use extinguishing media suitable for surrounding area. #### Special hazards arising from the substrate or mixture Fire Incompatibility None known. #### Advice for firefighters #### Alert Fire Brigade and tell them location and nature of hazard. - Wear breathing apparatus plus protective gloves in the event of a fire. - ▶ Prevent, by any means available, spillage from entering drains or water courses. - Use fire fighting procedures suitable for surrounding area. Fire Fighting - ▶ DO NOT approach containers suspected to be hot. - ▶ Cool fire exposed containers with water spray from a protected location. - If safe to do so, remove containers from path of fire. - Equipment should be thoroughly decontaminated after use. ## Fire/Explosion Hazard - Non combustible. - ▶ Not considered to be a significant fire risk. - Expansion or decomposition on heating may lead to violent rupture of containers. - ▶ Decomposes on heating and may produce toxic fumes of carbon monoxide (CO). - May emit acrid smoke. Other decomposition products include; carbon dioxide (CO2), nitrogen oxides (NOx), chlorides #### **SECTION 6 ACCIDENTAL RELEASE MEASURES** #### Personal precautions, protective equipment and emergency procedures # Minor Spills - ▶ Clean up all spills immediately. - Avoid breathing vapours and contact with skin and eyes. - Control personal contact with the substance, by using protective equipment. - ▶ Contain and absorb spill with sand, earth, inert material or vermiculite. - Wipe up. - Place in a suitable, labelled container for waste disposal. # **Major Spills** #### Minor hazard ► Clear area of personnel. - ▶ Alert Fire Brigade and tell them location and nature of hazard. - ► Control personal contact with the substance, by using protective equipment as required. - ▶ Prevent spillage from entering drains or water ways. - · Contain spill with sand, earth or vermiculite. - ▶ Collect recoverable product into labelled containers for recycling. - Absorb remaining product with sand, earth or vermiculite and place in appropriate containers for disposal. - Wash area and prevent runoff into drains or waterways. - If contamination of drains or waterways occurs, advise emergency services. Personal Protective Equipment advice is contained in Section 8 of the SDS. #### **SECTION 7 HANDLING AND STORAGE** #### Precautions for safe handling | Safe handling | No special handling procedures required. | |-------------------|---| | Other information | Store in original containers. Keep containers securely sealed. Store in a cool, dry, well-ventilated area. Store away from incompatible materials and foodstuff containers. Protect containers against physical damage and check regularly for leaks. Observe manufacturer's storage and handling recommendations contained within this SDS. | ### Conditions for safe storage, including any incompatibilities | Suitable container | Polyethylene or polypropylene container. Packing as recommended by manufacturer. Check all containers are clearly labelled and free from leaks. | |-------------------------|---| | Storage incompatibility | None known | #### SECTION 8 EXPOSURE CONTROLS / PERSONAL PROTECTION Febreze Fabric Refresher Issue Date: 01/01/2013 Print Date: 31/03/2016 #### **Control parameters** #### OCCUPATIONAL EXPOSURE LIMITS (OEL) #### INGREDIENT DATA | Source | Ingredient | Material name | TWA | STEL | Peak | Notes | |---------------------------------|------------|---------------|-----------------------|---------------|---------------|---------------| | Australia Exposure
Standards | ethanol | Ethyl alcohol | 1880 mg/m3 / 1000 ppm | Not Available | Not Available | Not Available | #### **EMERGENCY LIMITS** | Ingredient | Material name | TEEL-1 | TEEL-2 | TEEL-3 | |----------------------------------|----------------------------------|---------------|---------------|---------------| | ethanol | Ethyl alcohol; (Ethanol) | Not Available | Not Available | Not Available | | didecyldimethylammonium chloride | Didecyldimethylammonium chloride | 0.3 mg/m3 | 3.3 mg/m3 | 17 mg/m3 | | Ingredient | Original IDLH | Revised IDLH | |----------------------------------|---------------|-----------------| | ethanol | 15,000 ppm | 3,300 [LEL] ppm | | didecyldimethylammonium chloride | Not Available | Not Available | #### MATERIAL DATA None assigned. Refer to individual constituents. #### **Exposure controls** Engineering controls are used to remove a hazard or place a barrier between the worker and the hazard. Well-designed engineering controls can be highly effective in protecting workers and will typically be independent of worker interactions to provide this high level of protection. The basic types of engineering controls are: Process controls which involve changing the way a job activity or process is done to reduce the risk. Enclosure and/or isolation of emission source which keeps a selected hazard "physically" away from the worker and ventilation that strategically "adds" and "removes" air in the work environment. Ventilation can remove or dilute an air contaminant if designed properly. The design of a ventilation system must match the particular process and chemical or contaminant in use. Employers may need to use multiple types of controls to prevent employee overexposure. General exhaust is adequate under normal operating conditions. If risk of overexposure exists, wear SAA approved respirator. Correct fit is essential to obtain adequate protection. Provide adequate ventilation in warehouse or closed storage areas. Air contaminants generated in the workplace possess varying "escape" velocities which, in turn, determine the "capture velocities" of fresh circulating air required to effectively remove the contaminant. # Appropriate engineering controls | Type of Contaminant: | Air Speed: | |---|---------------------------------| | solvent, vapours, degreasing etc., evaporating from tank (in still air) | 0.25-0.5 m/s
(50-100 f/min) | | aerosols, fumes from pouring operations, intermittent container filling, low speed conveyer transfers, welding, spray drift, plating acid fumes, pickling (released at low velocity into zone of active generation) | 0.5-1 m/s
(100-200 f/min.) | | direct spray, spray painting in shallow booths, drum filling, conveyer loading, crusher dusts, gas discharge (active generation into zone of rapid air motion) | 1-2.5 m/s
(200-500 f/min) | | grinding, abrasive blasting, tumbling, high speed wheel generated dusts (released at high initial velocity into zone of very high rapid air motion). | 2.5-10 m/s
(500-2000 f/min.) | Within each range the appropriate value depends on: | Lower end of the range | Upper end of the range | |---|------------------------------------| | 1: Room air currents minimal or favourable to capture | 1: Disturbing room air currents | | 2: Contaminants of low toxicity or of nuisance value only | 2: Contaminants of high toxicity | | 3: Intermittent, low production. | 3: High production, heavy use | | 4: Large hood or large air mass in motion | 4: Small hood - local control only | Simple theory shows that air velocity falls rapidly with distance away from the opening of a simple extraction pipe. Velocity generally decreases with the square of distance from the extraction point (in simple cases). Therefore the air speed at the extraction point should be adjusted, accordingly, after reference to distance from the contaminating source. The air velocity at the extraction fan, for example, should be a minimum of 1-2 m/s (200-400 f/min.) for extraction of solvents generated in a #### Issue Date: 01/01/2013 Print Date: 31/03/2016 #### Febreze Fabric Refresher tank 2 meters distant from the extraction point. Other mechanical considerations, producing performance deficits within the extraction apparatus, make it essential that theoretical air velocities are multiplied by factors of 10 or more when extraction systems are installed or used. Personal protection No special equipment for minor exposure i.e. when handling small quantities. OTHERWISE: Safety glasses with side shields. ► Contact lenses may pose a special hazard; soft contact lenses may absorb and concentrate irritants. A written policy document, describing the wearing of lenses or restrictions on use, should be created for each workplace or task. This should Eve and face include a review of lens absorption and adsorption for the class of chemicals in use and an account of injury experience. protection Medical and first-aid personnel should be trained in their removal and suitable equipment should be readily available. In the event of chemical exposure, begin eye irrigation immediately and remove contact lens as soon as practicable. Lens should be removed at the first signs of eye redness or irritation - lens should be removed in a clean environment only after workers have washed hands thoroughly. [CDC NIOSH Current Intelligence Bulletin 59], [AS/NZS 1336 or national equivalent1 See Hand protection below Skin protection No special equipment needed when handling small quantities. Hands/feet protection OTHERWISE: Wear chemical protective gloves, e.g. PVC. See Other protection below **Body protection** No special equipment needed when handling small quantities. OTHERWISE: Other protection ▶ Overalls. ▶ Barrier cream. ► Eyewash unit. #### Recommended material(s) Thermal hazards #### **GLOVE SELECTION INDEX** Glove selection is based on a modified presentation of the: #### "Forsberg Clothing Performance Index". The effect(s) of the following substance(s) are taken into account in the *computer-generated* selection: Not Available Febreze Fabric Refresher | Material | СРІ | |------------------|-----| | BUTYL | Α | | NEOPRENE | Α | | NITRILE | Α | | NITRILE+PVC | Α | | PE/EVAL/PE | Α | | PVC | В | | NATURAL RUBBER | С | | NATURAL+NEOPRENE | С | - * CPI Chemwatch Performance Index - A: Best Selection - B: Satisfactory; may degrade after 4 hours continuous immersion - C: Poor to Dangerous Choice for other than short term immersion **NOTE**: As a series of factors will influence the actual performance of the glove, a final selection must be based on detailed observation. - * Where the glove is to be used on a short term, casual or infrequent basis, factors such as "feel" or convenience (e.g. disposability), may dictate a choice of gloves which might otherwise be unsuitable following long-term or frequent use. A qualified practitioner should be consulted. #### Respiratory protection Type A Filter of sufficient capacity. (AS/NZS 1716 & 1715, EN 143:2000 & 149:2001, ANSI Z88 or national equivalent) Selection of the Class and Type of respirator will depend upon the level of breathing zone contaminant and the chemical nature of the contaminant. Protection Factors (defined as the ratio of contaminant outside and inside the mask) may also be important. | Required minimum protection factor | Maximum gas/vapour concentration present in air p.p.m. (by volume) | Half-face
Respirator | Full-Face
Respirator | |------------------------------------|--|-------------------------|-------------------------| | up to 10 | 1000 | A-AUS /
Class1 | - | | up to 50 | 1000 | - | A-AUS /
Class 1 | | up to 50 | 5000 | Airline * | - | | up to 100 | 5000 | - | A-2 | | up to 100 | 10000 | - | A-3 | | 100+ | | | Airline** | * - Continuous Flow ** - Continuous-flow or positive pressure demand A(All classes) = Organic vapours, B AUS or B1 = Acid gasses, B2 = Acid gas or hydrogen cyanide(HCN), B3 = Acid gas or hydrogen cyanide(HCN), E = Sulfur dioxide(SO2), G = Agricultural chemicals, K = Ammonia(NH3), Hg = Mercury, NO = Oxides of nitrogen, MB = Methyl bromide, AX = Low boiling point organic compounds(below 65 degC) #### **SECTION 9 PHYSICAL AND CHEMICAL PROPERTIES** #### Information on basic physical and chemical properties Appearance Fragrant liquid; mixes with water. Chemwatch: **4841-16**Version No: **2.1.1.1** Page 6 of 11 Febreze Fabric Refresher Issue Date: 01/01/2013 Print Date: 31/03/2016 | Physical state | Liquid | Relative density
(Water = 1) | Not Available | |--|----------------|---|---------------| | Odour | Not Available | Partition coefficient n-octanol / water | Not Available | | Odour threshold | Not Available | Auto-ignition temperature (°C) | Not Available | | pH (as supplied) | Not Available | Decomposition temperature | Not Available | | Melting point / freezing point (°C) | Not Available | Viscosity (cSt) | Not Available | | Initial boiling point and boiling range (°C) | Not Available | Molecular weight
(g/mol) | Not Available | | Flash point (°C) | Not Available | Taste | Not Available | | Evaporation rate | Not Available | Explosive properties | Not Available | | Flammability | Not Available | Oxidising properties | Not Available | | Upper Explosive Limit (%) | Not Applicable | Surface Tension
(dyn/cm or mN/m) | Not Available | | Lower Explosive Limit (%) | Not Applicable | Volatile Component
(%vol) | Not Available | | Vapour pressure (kPa) | Not Available | Gas group | Not Available | | Solubility in water (g/L) | Miscible | pH as a solution (1%) | Not Available | | Vapour density (Air = 1) | Not Available | VOC g/L | Not Available | #### **SECTION 10 STABILITY AND REACTIVITY** | Reactivity | See section 7 | |--|---| | Chemical stability | Product is considered stable and hazardous polymerisation will not occur. | | Possibility of
hazardous reactions | See section 7 | | Conditions to avoid | See section 7 | | Incompatible materials | See section 7 | | Hazardous
decomposition
products | See section 5 | ### **SECTION 11 TOXICOLOGICAL INFORMATION** #### Information on toxicological effects | Inhaled | The material is not thought to produce adverse health effects or irritation of the respiratory tract (as classified by EC Directives using animal models). Nevertheless, good hygiene practice requires that exposure be kept to a minimum and that suitable control measures be used in an occupational setting. Not normally a hazard due to non-volatile nature of product | |--------------|--| | Ingestion | The material has NOT been classified by EC Directives or other classification systems as "harmful by ingestion". This is because of the lack of corroborating animal or human evidence. The material may still be damaging to the health of the individual, following ingestion, especially where pre-existing organ (e.g liver, kidney) damage is evident. Present definitions of harmful or toxic substances are generally based on doses producing mortality rather than those producing morbidity (disease, ill-health). Gastrointestinal tract discomfort may produce nausea and vomiting. In an occupational setting however, ingestion of insignificant quantities is not thought to be cause for concern. | | Skin Contact | The material is not thought to produce adverse health effects or skin irritation following contact (as classified by EC Directives using animal models). Nevertheless, good hygiene practice requires that exposure be kept to a minimum and that suitable gloves be used in an occupational setting. | | Еуе | Limited evidence exists, or practical experience suggests, that the material may cause eye irritation in a substantial number of individuals and/or is expected to produce significant ocular lesions which are present twenty-four hours or more after instillation into the eye(s) of experimental animals. Repeated or prolonged eye contact may cause inflammation characterised by temporary redness (similar to windburn) of the conjunctiva (conjunctivitis); temporary impairment of vision and/or other transient eye damage/ulceration may occur. | | Chronic | Long-term exposure to the product is not thought to produce chronic effects adverse to health (as classified by EC Directives using animal models); nevertheless exposure by all routes should be minimised as a matter of course. | Chemwatch: **4841-16**Page **7** of **11**Issue Date: **01/01/2013**Version No: **2.1.1.1**Print Date: **31/03/2016** #### Febreze Fabric Refresher | | TOXICITY | IRRITATION | | |--|--|-----------------------------------|--| | Febreze Fabric Refreshe | Not Available | Not Available | | | | тохісіту | IRRITATION | | | | Dermal (rabbit) LD50: 17100 mg/kg ^[1] | Eye (rabbit): 500 mg SEVERE | | | ethanol | Inhalation (rat) LC50: 64000 ppm/4h ^[2] | Eye (rabbit):100mg/24hr-moderate | | | | Oral (rat) LD50: >1187-2769 mg/kg ^[1] | Skin (rabbit):20 mg/24hr-moderate | | | | | Skin (rabbit):400 mg (open)-mild | | | didecyldimethylammoniu | n TOXICITY | IRRITATION | | | chloric | Oral (rat) LD50: 84 mg/kgE ^[2] | Skin (rabbit): 500 mg SEVERE | | | Legend: 1. Value obtained from Europe ECHA Registered Substances - Acute toxicity 2.* Value obtained from manufacturer's SDS. Unless otherwise specified data extracted from RTECS - Register of Toxic Effect of chemical Substances | | | | ### ETHANOL The material may cause skin irritation after prolonged or repeated exposure and may produce a contact dermatitis (nonallergic). This form of dermatitis is often characterised by skin redness (erythema) and swelling the epidermis. Histologically there may be intercellular oedema of the spongy layer (spongiosis) and intracellular oedema of the epidermis. No specific data describing the health effects of cationic dialkyldimethylammonium (DADMA) salts are readily available. However, many of the properties described for alkyltrimethylammonium (ATMA)) salts also apply to DADMA salts, although these are generally less irritating than the corresponding ATMA salts For Fatty Nitrogen-Derived Cationics:(FND Cationics): The available data support the conclusion that, because of their closely-related structures and similar physical/chemical properties, the FND Cationics possess similar human health-related effects across the category The differences in chain length, degree of saturation of the carbon chains, source of the natural oils, or addition of an amino group in the chain would not be expected to have an impact on the toxicity profile. This conclusion is supported by a number of studies in the FND family of chemicals (amines, cationics, and amides as separate categories) that show no differences in the length or degree of saturation of the alkyl substituents and is also supported by the limited toxicity of these long-chain substituted chemicals Acute toxicity: Adequate acute oral LD50 studies were available throughout the category. They indicate minimal to moderate acute toxicity of the chemical class with LD50 values ranging from approximately 60 to > 16,000 mg/kg. Repeat dose toxicity studies supported the conclusion that the FND Cationics have minimal toxicity potential below acutely toxic doses. **Genotoxicity:** Available *in vitro* and *in vivo* assays indicated the FND Cationics and supplemental chemicals are unlikely to have mutagenic activity. The conclusion of a lack of mutagenicity and clastogenicity for FND Cationics is supported robustly by the full complement of studies available for the three non-HPV chemicals, including a negative *in vivo* mouse micronucleus assay and a negative *in vivo* chromosomal aberration assay for related substances Reproductive and developmental toxicity: A reproductive screening evaluation from two repeat dose toxicity studies, two reproductive toxicity studies and results from available developmental toxicity studies, indicated that the FND Cationics are unlikely to cause reproductive effects and are not developmental toxicants. The available data indicate that these chemicals are neither embryo/foetal toxicants nor teratogens #### DIDECYLDIMETHYLAMMONIUM CHLORIDE In evaluating potential toxicity of the FND Nitriles, it is also useful to review the available data for the related FND Amides and FND Amines Category chemicals. Acute oral toxicity studies (approximately 80 studies for 40 chemicals in the three categories) provide LD50 values from approximately 400 to 10,000 mg/kg with no apparent organ specific toxicity. Similarly, repeated dose toxicity studies (approximately 35 studies for 15 chemicals) provide NOAELs between 10 and 100 mg/kg/day for rats and slightly lower for dogs. More than 60 genetic toxicity studies (in vitro bacterial and mammalian cells as well as in vivo studies) indicated no mutagenic activity among more than 30 chemicals tested. For reproductive evaluations, 14 studies evaluated reproductive endpoints and/or reproductive organs for 11 chemicals, and 15 studies evaluated developmental toxicity for 13 chemicals indicating no reproductive or developmental effects for the FND group as a whole. #### For alkyltrimethylammonium chloride (ATMAC) Most undiluted cationic surfactants satisfy the criteria for classification as Harmful (Xn) with R22 and as Irritant (Xi) for skin and eyes with R38 and R41. In addition, certain surfactants will satisfy the criteria for classification as Corrosive with R34 in addition to the acute toxicity. According to Centre Europeen des Agents de Surface et de leurs Intermediaires Organiques (CESIO), C8-18 alkyltrimethylammonium chloride (ATMAC) (i.e., lauryl, coco, soya, and tallow) are classified as Corrosive (C) with the risk phrases R22 (Harmful if swallowed) and R34 (Causes burns). C16 ATMAC is classified as Harmful (Xn) with the risk phrases R22 (Harmful if swallowed), R38 (Irritating to skin), and R41 (Risk of serious damage to eyes). C20-22 ATMAC are classified as Irritant (Xi) with R36/38 (Irritating to eyes and skin). **Toxokinetics and Acute Toxicity:** The few available absorption studies conducted with cationic surfactants indicate that absorption occurs in small amounts through the skin. Percutaneous absorption of radiolabelled C12 alkyltrimethylammonium bromide (ATMAB) in 3% aqueous solution (applied to an 8 cm2 area with occlusion) in the rat was low and corresponded to 0.6% of the applied 14C activity in 72 hours. Most of the absorbed surfactant was Chemwatch: **4841-16**Page **8** of **11**Issue Date: **01/01/2013**Version No: **2.1.1.1**Print Date: **31/03/2016** #### Febreze Fabric Refresher excreted in the urine, i.e. 0.35% of the applied 14C activity within the first 24 hours, whereas 13.2% remained on the skin after rinsing. Cutaneous application of the surfactant without rinsing resulted in a greater degree of percutaneous absorption (3.15%) in 48 hours. In the rat elimination after parenteral administration was rapid and was effected primarily via the urine, - more than 80% of the radioactivity was eliminated within 24 hours of application. About 80% of the 14C activity was found in the gastrointestinal tract 8 hours after oral administration of 14C-labelled C16 ATMAB. Only small amounts of the applied radioactivity were found in the urine and in the blood plasma. This indicates poor intestinal absorption. Similar small amounts of 14C were found in the liver, kidneys, spleen, heart, lungs and skeletal muscles. Within 3 days of ingestion, 92% of the administrated radioactivity had been excreted in the faeces and 1% in the urine. No appreciable enterohepatic circulation of the radioactivity was found. The acute oral toxicity of alkyltrimethylammonium salts is somewhat higher than the toxicity of anionic and nonionic surfactants. This may be due to the strongly irritating effect which cationic surfactants exhibit on the mucous membrane of the gastrointestinal tract (SFT 1991). Cationic surfactants are generally about 10 times more toxic when administrated by the intravenous route compared to oral administration. **Skin and Eye Irritation:** Skin irritation depends on surfactant concentration. Regardless of the structure, cationic surfactants lead to serious destruction of the skin at high concentrations. Solutions of approximately 0.1% are rarely irritating, whereas irritation is usually pronounced at concentrations between 1.0 and 10.0% surfactant. C16 ATMAC was severely irritating to rabbit skin in a concentration of 2.5%. The surfactant was applied to intact and abraded sites and scored after 34 hours. Then the skin was rinsed and then scored again after 48 hours. The erythema and Eschar Index was 3.75 (maximum 4) and the edema Index was 2.0 (maximum 4). With regard to eye irritation, cationic surfactants are the most irritating of the surfactants. The longer chained alkyltrimethylammonium salts are less irritating to the rabbit eye than the shorter alkyl chain homologues. C10 ATMAB, C12 ATMAB, and C16 ATMAC were tested in concentrations between 0.1 and 1.0% in water and were found to be significantly irritating or injurious to the rabbit eye. A 5% solution of C18 ATMAC was instilled into the eyes of guinea pigs, and this concentration was very irritating with a total PII (The Primary Irritation Index) score of 96 (maximum 110). A homologous series of ATMAB produced very little swelling of the stratum corneum and some homologues produced a shrinkage of the stratum corneum after prolonged exposure. Many proteins in the skin are considerably more resistant to the denaturating effects of cationic surfactants compared to those of anionic surfactants. As cationic surfactants frequently have a lower critical micelle concentration than the anionic surfactants, a saturation of the surfactant/protein complex is prevented by the formation of micelles. Compared to a representative anionic surfactant, the cooperative binding with subsequent protein denaturation requires about a tenfold higher concentration of a cationic surfactant. Contrary to the irreversible denaturating effect of sodium dodecyl sulfate, the adverse effects of some cationic surfactants on proteins may be reversible. Cationic surfactants can interact with proteins or peptides by polar and hydrophobic binding. Polar interactions result in electrostatic bonds between the negatively charged groups of the protein molecule and the positively charged surfactant molecule. Sensitisation: A repeated insult patch test of C16 ATMAC was conducted with 114 volunteers. Seventeen days after the last induction of 0.25% surfactant, a challenge patch of 0.25% was applied. No sensitization was observed. Sub-chronic toxicity: C16 ATMAB was administered at concentrations of 10, 20, and 45 mg/kg/day via the drinking water to rats for one year. The only effect observed was a decrease in body weight gain in the 45 mg/day dose group. **Reproductive Toxicity:** No embryo toxic effects were seen, when C18 ATMAC was applied dermally to pregnant rats during the period of major organogenesis (day 6-15 of gestation). The concentrations of C18 ATMAC were 0.9, 1.5 and 2.5%. There was no increase in the incidence of fetal malformations. C16 ATMAB was not teratogenic in rats after oral doses. Mild embryonic effects were observed with 50 mg/kg/day, but these effects were attributed to maternal toxicity rather than to a primary embryonic effect. Lower doses of C16 ATMAB showed no embryo toxic or teratogenic effects. **Mutagenicity:** C16 ATMAC was studied in in vitro short-term tests to detect potential mutagenic effects. Cultures of Syrian golden hamster embryo cells were used for an in vitro bioassay. No in vitro transformation of hamster embryo cells was induced, and C16 ATMAC was not mutagenic in *Salmonella typhimurium* (Inoue and Sunakawa 1980). No mutagenic effects or genetic damages were indicated in a survey of nine short-term genotoxicity tests with C16 and C18 ATMAC (Yam *et al.* 1984). Environmental and Health Assessment of Substances in Household Detergents and Cosmetic Detergent Products, Environment Project, 615, 2001. Torben Madsen et al: Miljoministeriet (Danish Environmental Protection Agency) #### For quaternary ammonium compounds (QACs): Quaternary ammonium compounds (QACs) are cationic surfactants. They are synthetic organically tetra-substituted ammonium compounds, where the R substituents are alkyl or heterocyclic radicals. A common characteristic of these synthetic compounds is that one of the R's is a long-chain hydrophobic aliphatic residue. The cationic surface active compounds are in general more toxic than the anionic and non-ionic surfactants. The positively-charged cationic portion is the functional part of the molecule and the local irritation effects of QACs appear to result from the guaternary ammonium cation. Due to their relative ability to solubilise phospholipids and cholesterol in lipid membranes, QACs affect cell permeability which may lead to cell death. Further QACs denature proteins as cationic materials precipitate protein and are accompanied by generalised tissue irritation. It has been suggested that the experimentally determined decrease in acute toxicity of QACs with chain lengths above C16 is due to decreased water solubility. In general it appears that QACs with a single long-chain alkyl groups are more toxic and irritating than those with two such substitutions, The straight chain aliphatic QACs have been shown to release histamine from minced guinea pig lung tissue. However, studies with benzalkonium chloride have shown that the effect on histamine release depends on the concentration of the solution. When cell suspensions (11% mast cells) from rats were exposed to low concentrations, Chemwatch: **4841-16**Version No: **2.1.1.1** # Page 9 of 11 Febreze Fabric Refresher Issue Date: **01/01/2013**Print Date: **31/03/2016** a decrease in histamine release was seen. When exposed to high concentrations the opposite result was obtained. In addition, QACs may show curare-like properties (specifically benzalkonium and cetylpyridinium derivatives, a muscular paralysis with no involvement of the central nervous system. This is most often associated with lethal doses. Parenteral injections in rats, rabbits and dogs have resulted in prompt but transient limb paralysis and sometimes fatal paresis of the respiratory muscles. This effect seems to be transient. From human testing of different QACs the generalised conclusion is obtained that all the compounds investigated to date exhibit similar toxicological properties. 551ddag The material may produce severe skin irritation after prolonged or repeated exposure, and may produce a contact dermatitis (nonallergic). This form of dermatitis is often characterised by skin redness (erythema) thickening of the epidermis. Histologically there may be intercellular oedema of the spongy layer (spongiosis) and intracellular oedema of the epidermis. Prolonged contact is unlikely, given the severity of response, but repeated exposures may produce severe ulceration. Asthma-like symptoms may continue for months or even years after exposure to the material ceases. This may be due to a non-allergenic condition known as reactive airways dysfunction syndrome (RADS) which can occur following exposure to high levels of highly irritating compound. Key criteria for the diagnosis of RADS include the absence of preceding respiratory disease, in a non-atopic individual, with abrupt onset of persistent asthma-like symptoms within minutes to hours of a documented exposure to the irritant. A reversible airflow pattern, on spirometry, with the presence of moderate to severe bronchial hyperreactivity on methacholine challenge testing and the lack of minimal lymphocytic inflammation, without eosinophilia, have also been included in the criteria for diagnosis of RADS. RADS (or asthma) following an irritating inhalation is an infrequent disorder with rates related to the concentration of and duration of exposure to the irritating substance. Industrial bronchitis, on the other hand, is a disorder that occurs as result of exposure due to high concentrations of irritating substance (often particulate in nature) and is completely reversible after exposure ceases. The disorder is characterised by dyspnea, cough and mucus production. Somnolence recorded. | Acute Toxicity | 0 | Carcinogenicity | 0 | |-----------------------------------|---|-----------------------------|---| | Skin
Irritation/Corrosion | 0 | Reproductivity | 0 | | Serious Eye
Damage/Irritation | 0 | STOT - Single
Exposure | 0 | | Respiratory or Skin sensitisation | 0 | STOT - Repeated
Exposure | 0 | | Mutagenicity | 0 | Aspiration Hazard | 0 | Legend: - X Data available but does not fill the criteria for classification - Data required to make classification available - – Data Not Available to make classification #### **SECTION 12 ECOLOGICAL INFORMATION** #### **Toxicity** | Endpoint | Test Duration (hr) | Species | Value | Source | |----------|---|---|---|---| | EC50 | 24 | Algae or other aquatic plants | 0.0129024mg/L | 4 | | EC50 | 48 | Crustacea | 2mg/L | 4 | | LC50 | 96 | Fish | 42mg/L | 4 | | NOEC | 2016 | Fish | 0.000375mg/L | 4 | | EC50 | 72 | Algae or other aquatic plants | 275mg/L | 2 | | EC50 | 48 | Crustacea | 0.018mg/L | 4 | | EC50 | 72 | Algae or other aquatic plants | 0.11mg/L | 4 | | LC50 | 96 | Fish | 0.00001mg/L | 4 | | NOEC | 96 | Fish | <0.00001mg/L | 4 | | EC50 | 48 | Crustacea | 0.029mg/L | 2 | | | EC50 EC50 LC50 NOEC EC50 EC50 LC50 NOEC | EC50 24 EC50 48 LC50 96 NOEC 2016 EC50 72 EC50 48 EC50 72 LC50 96 NOEC 96 | EC50 24 Algae or other aquatic plants EC50 48 Crustacea LC50 96 Fish NOEC 2016 Fish EC50 72 Algae or other aquatic plants EC50 48 Crustacea EC50 72 Algae or other aquatic plants LC50 96 Fish NOEC 96 Fish | EC50 24 Algae or other aquatic plants 0.0129024mg/L EC50 48 Crustacea 2mg/L LC50 96 Fish 42mg/L NOEC 2016 Fish 0.000375mg/L EC50 72 Algae or other aquatic plants 275mg/L EC50 48 Crustacea 0.018mg/L EC50 72 Algae or other aquatic plants 0.11mg/L LC50 96 Fish 0.00001mg/L NOEC 96 Fish <0.00001mg/L | Legend: Extracted from 1. IUCLID Toxicity Data 2. Europe ECHA Registered Substances - Ecotoxicological Information - Aquatic Toxicity 3. EPIWIN Suite V3.12 - Aquatic Toxicity Data (Estimated) 4. US EPA, Ecotox database - Aquatic Toxicity Data 5. ECETOC Aquatic Hazard Assessment Data 6. NITE (Japan) - Bioconcentration Data 7. METI (Japan) - Bioconcentration Data 8. Vendor Data #### Issue Date: 01/01/2013 Print Date: 31/03/2016 #### Febreze Fabric Refresher DO NOT discharge into sewer or waterways. #### Persistence and degradability | Ingredient | Persistence: Water/Soil | Persistence: Air | |------------|-----------------------------|-----------------------------| | ethanol | LOW (Half-life = 2.17 days) | LOW (Half-life = 5.08 days) | #### **Bioaccumulative potential** | Ingredient | Bioaccumulation | |------------|----------------------| | ethanol | LOW (LogKOW = -0.31) | #### Mobility in soil | Ingredient | Mobility | |------------|----------------| | ethanol | HIGH (KOC = 1) | #### **SECTION 13 DISPOSAL CONSIDERATIONS** #### Waste treatment methods # Product / Packaging disposal - ► Recycle wherever possible. - Consult manufacturer for recycling options or consult local or regional waste management authority for disposal if no suitable treatment or disposal facility can be identified. - Dispose of by: burial in a land-fill specifically licenced to accept chemical and / or pharmaceutical wastes or incineration in a licenced apparatus (after admixture with suitable combustible material). - ▶ Decontaminate empty containers. Observe all label safeguards until containers are cleaned and destroyed. #### **SECTION 14 TRANSPORT INFORMATION** #### Labels Required | Marine Pollutant | NO | |------------------|----------------| | HAZCHEM | Not Applicable | Land transport (ADG): NOT REGULATED FOR TRANSPORT OF DANGEROUS GOODS Air transport (ICAO-IATA / DGR): NOT REGULATED FOR TRANSPORT OF DANGEROUS GOODS Sea transport (IMDG-Code / GGVSee): NOT REGULATED FOR TRANSPORT OF DANGEROUS GOODS Transport in bulk according to Annex II of MARPOL and the IBC code Not Applicable #### **SECTION 15 REGULATORY INFORMATION** #### Safety, health and environmental regulations / legislation specific for the substance or mixture #### ETHANOL(64-17-5) IS FOUND ON THE FOLLOWING REGULATORY LISTS Australia Exposure Standards Australia Inventory of Chemical Substances (AICS) Australia Hazardous Substances Information System - Consolidated Lists #### DIDECYLDIMETHYLAMMONIUM CHLORIDE(7173-51-5) IS FOUND ON THE FOLLOWING REGULATORY LISTS | Australia Hazardous Substances Information System - Consolidated Lists | Australia Inventory of Chemical Substances (AICS) | |--|---| | | | | National Inventory | Status | |----------------------------------|---| | Australia - AICS | Y | | Canada - DSL | Y | | Canada - NDSL | N (didecyldimethylammonium chloride; ethanol) | | China - IECSC | Y | | Europe - EINEC /
ELINCS / NLP | Y | | Japan - ENCS | N (didecyldimethylammonium chloride) | Chemwatch: 4841-16 Page 11 of 11 Issue Date: 01/01/2013 Version No: 2.1.1.1 Print Date: 31/03/2016 #### Febreze Fabric Refresher | Korea - KECI | Y | |---------------------|---| | New Zealand - NZIoC | Υ | | Philippines - PICCS | Υ | | USA - TSCA | Υ | | Legend: | Y = All ingredients are on the inventory N = Not determined or one or more ingredients are not on the inventory and are not exempt from listing(see specific ingredients in brackets) | #### **SECTION 16 OTHER INFORMATION** #### Other information Classification of the preparation and its individual components has drawn on official and authoritative sources as well as independent review by the Chemwatch Classification committee using available literature references. A list of reference resources used to assist the committee may be found at: www.chemwatch.net The SDS is a Hazard Communication tool and should be used to assist in the Risk Assessment. Many factors determine whether the reported Hazards are Risks in the workplace or other settings. Risks may be determined by reference to Exposures Scenarios. Scale of use, frequency of use and current or available engineering controls must be considered. #### **Definitions and abbreviations** PC-TWA: Permissible Concentration-Time Weighted Average PC-STEL: Permissible Concentration-Short Term Exposure Limit IARC: International Agency for Research on Cancer ACGIH: American Conference of Governmental Industrial Hygienists STEL: Short Term Exposure Limit TEEL: Temporary Emergency Exposure Limit。 IDLH: Immediately Dangerous to Life or Health Concentrations OSF: Odour Safety Factor NOAEL :No Observed Adverse Effect Level LOAEL: Lowest Observed Adverse Effect Level TLV: Threshold Limit Value LOD: Limit Of Detection OTV: Odour Threshold Value BCF: BioConcentration Factors BEI: Biological Exposure Index This document is copyright. Apart from any fair dealing for the purposes of private study, research, review or criticism, as permitted under the Copyright Act, no part may be reproduced by any process without written permission from CHEMWATCH. TEL (+61 3) 9572 4700.